VictoriAragon - Portofilio- Post¶
Site description goes here¶
Data Description¶
In [5]:
# Code here
import pandas as pd
NM_url = ('https://www.ncei.noaa.gov/access/services/da'
'ta/v1?dataset=daily-summaries&dataTypes=TOBS,PRCP&stations=USC00298085&startDate=1972-04-01&endDate=2024-08-31&units=standard')
NM_df = pd.read_csv(
NM_url, index_col='DATE', parse_dates=True)
NM_df.TOBS.plot(ylabel="Temperature (F)")
Out[5]:
<Axes: xlabel='DATE', ylabel='Temperature (F)'>
In [8]:
# REMOVED STATIONS
NM_df = NM_df[["PRCP", "TOBS"]]
NM_df
Out[8]:
PRCP | TOBS | |
---|---|---|
DATE | ||
1972-04-01 | 0.00 | 34.0 |
1972-04-02 | 0.00 | 42.0 |
1972-04-03 | 0.00 | 44.0 |
1972-04-04 | 0.00 | 45.0 |
1972-04-05 | 0.00 | 45.0 |
... | ... | ... |
2024-08-27 | 0.20 | 66.0 |
2024-08-28 | 0.00 | 66.0 |
2024-08-29 | 0.00 | 68.0 |
2024-08-30 | 0.06 | 69.0 |
2024-08-31 | 0.00 | 68.0 |
18976 rows × 2 columns
convert to C¶
In [9]:
# Resampling the data
NM_ann_climate_df = NM_df.resample('Y').mean()
NM_ann_climate_df
Out[9]:
PRCP | TOBS | |
---|---|---|
DATE | ||
1972-12-31 | 0.044473 | 48.948718 |
1973-12-31 | 0.035041 | 44.448753 |
1974-12-31 | 0.037589 | 45.742466 |
1975-12-31 | 0.034630 | 44.567123 |
1976-12-31 | 0.021557 | 46.243169 |
1977-12-31 | 0.036274 | 48.041096 |
1978-12-31 | 0.038603 | 48.693151 |
1979-12-31 | 0.044247 | 46.561644 |
1980-12-31 | 0.031393 | 48.704918 |
1981-12-31 | 0.037096 | 49.758904 |
1982-12-31 | 0.037682 | 46.526316 |
1983-12-31 | 0.028085 | 52.038997 |
1984-12-31 | 0.047052 | 62.575342 |
1985-12-31 | 0.049587 | 54.826923 |
1986-12-31 | 0.056374 | 51.608219 |
1987-12-31 | 0.031000 | 52.134247 |
1988-12-31 | 0.046606 | 49.805556 |
1989-12-31 | 0.028802 | 53.429412 |
1990-12-31 | 0.041412 | 49.869888 |
1991-12-31 | 0.053878 | 46.710714 |
1992-12-31 | 0.040962 | 49.227528 |
1993-12-31 | 0.036565 | 50.652047 |
1994-12-31 | 0.054290 | 50.556497 |
1995-12-31 | 0.027235 | 50.478992 |
1996-12-31 | 0.037857 | 50.244382 |
1997-12-31 | 0.048430 | 47.671388 |
1998-12-31 | 0.037631 | 48.971751 |
1999-12-31 | 0.037898 | 51.756923 |
2000-12-31 | 0.033736 | 49.717949 |
2001-12-31 | 0.026354 | 48.680672 |
2002-12-31 | 0.028137 | 47.469741 |
2003-12-31 | 0.019917 | 48.514124 |
2004-12-31 | 0.034533 | 46.493075 |
2005-12-31 | 0.037973 | 48.050420 |
2006-12-31 | 0.041726 | 47.739011 |
2007-12-31 | 0.035647 | 48.162983 |
2008-12-31 | 0.040902 | 47.652893 |
2009-12-31 | 0.030328 | 46.725373 |
2010-12-31 | 0.041836 | 47.925824 |
2011-12-31 | 0.111630 | 48.093151 |
2012-12-31 | 0.023955 | 50.041322 |
2013-12-31 | 0.030192 | 48.432507 |
2014-12-31 | 0.031671 | 49.202247 |
2015-12-31 | 0.038257 | 50.501684 |
2016-12-31 | 0.028084 | 49.393293 |
2017-12-31 | 0.032849 | 51.116992 |
2018-12-31 | 0.035342 | 51.014124 |
2019-12-31 | 0.037548 | 48.883978 |
2020-12-31 | 0.020464 | 51.016575 |
2021-12-31 | 0.022329 | 51.439437 |
2022-12-31 | 0.038956 | 49.977208 |
2023-12-31 | 0.029288 | 50.544944 |
2024-12-31 | 0.036208 | 54.297071 |
In [14]:
# PLOT TEMP OBS COLUMN
NM_ann_climate_df.TOBS.plot(ylabel="Temperature (F)")
Out[14]:
<Axes: xlabel='DATE', ylabel='Temperature (F)'>